Abstract

To investigate the aqueous vein in vivo by using enhanced depth imaging optical coherence tomography (EDI-OCT) and optical coherence tomography angiography (OCTA). In this cross-sectional comparative study, 30 healthy participants were enrolled. Images of the aqueous and conjunctival veins were captured by EDI-OCT and OCTA before and after water loading. The area, height, width, location depth and blood flow of the aqueous vein and conjunctival vein were measured by Image J software. In the static state, the area of the aqueous vein was 8166.7±3272.7 µm2, which was smaller than that of the conjunctival vein (13 690±7457 µm2, P<0.001). The mean blood flow density of the aqueous vein was 35.3%±12.6%, which was significantly less than that of the conjunctival vein (51.5%±10.6%, P<0.001). After water loading, the area of the aqueous vein decreased significantly from 8725.8±779.4 µm2 (baseline) to 7005.2±566.2 µm2 at 45min but rose to 7863.0±703.2 µm2 at 60min (P=0.032). The blood flow density of the aqueous vein decreased significantly from 41.2%±4.5% (baseline) to 35.4%±3.2% at 30min but returned to 45.6%±3.6% at 60min (P=0.021). The structure and blood flow density of the aqueous vein can be effectively evaluated by OCT and OCTA. These may become biological indicators to evaluate aqueous vein changes and aqueous outflow resistance under different interventions in glaucoma patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.