Abstract

In this study, the feasibility of in vivo proton magnetic resonance spectroscopic imaging ((1)H MRSI) of the healthy human brain at a field strength of 9.4 T, using conventional acquisition techniques, is examined and the initial experience is summarized. MRSI measurements were performed on a 9.4 T MR scanner (Siemens, Erlangen, Germany) equipped with head-only gradient insert (AC84, Siemens) and custom-developed, 8-channel transmit/24-channel receive, and 16-channel transmit/31-channel receive coils. Spectra were acquired from the superior part of the human brain with a modified STEAM sequence. Spectral quantification was done with LCModel software. Reasonable quality and signal-to-noise ratio of the acquired spectra allowed reliable quantification of 12 metabolites (Cramer-Rao lower bounds < 20 %), some of which may be difficult to quantify at field strengths below 7 T due to overlapping resonances or low concentrations. While further developments are necessary to minimize chemical shift displacement and homogeneity of the transmit field, it is demonstrated that in vivo (1)H MRSI at a field strength of 9.4 T is possible. However, further studies applying up-to-date techniques to overcome high-field specific problems are needed in order to assess the potential gain in sensitivity that may be offered by MRSI at 9.4 T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call