Abstract

Methotrexate (MTX) is a widely used drug for the management of various kinds of cancers. However, numerous challenges are associated with MTX like poor aqueous solubility, dose-dependent side effects and poor-bioavailability. With an aim to explore the potential benefits in drug delivery of MTX, it was intended to fabricate glycine-PLGA-based polymeric micelles. Glycine was chemically linked to PLGA and the linkage was confirmed by FT-IR, and NMR-Spectroscopy. The developed polymeric micelles offered substantial loading to MTX with a pH-dependent drug release profile. The drug was released maximally at the cancer cell pH vis-à-vis blood plasma pH. The cytotoxicity of drug against MDA-MB-231 cell lines was enhanced by approx. 100% and the confocal laser scanning microscopy confirmed the localization of dye-tagged nanocarriers in the interiors of cancer cells. The bioavailable fraction of the drug was increased by approx. 4-folds, whereas elimination half-life was enhanced by around two-folds in Wistar rats. The novel approach offers a biodegradable and promising carrier for the better delivery of anticancer agents with immense promises of efficacy enhancement, improved delivery and better pharmacokinetic profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.