Abstract

The aim of this study was to clarify the pharmacokinetic, tissue distribution, hematologic, and histopathologic characteristics of sustained-release cisplatin from implants [CDDP-nanoparticle (NP) implants]. Eighteen dogs (six hybrids and twelve beagles) were divided into three groups. In Group A, the six hybrid dogs were intravenously administered 20 mg CDDP via a hind limb vein. In Groups B and C, CDDP-NP implants containing CDDP doses of 40 and 60 mg, respectively, were embedded into the esophageal submucosa of beagles via painless gastroscopy with an endoscopic booster. Graphite frameless atomic absorption spectrophotometry was used to measure total platinum in plasma and tissues at various timepoints. In addition, free platinum levels in Group B were determined using inductively coupled plasma mass spectrometry. Toxicologic evaluation was also conducted. Pharmacokinetic results indicated that the CDDP-NP implant could achieve a smooth pharmacokinetic curve, with the plasma invalid concentration reached after almost 480 h, which is approximately ten times longer than that of standard CDDP (48 h). The peak time, peak concentration, clearance, elimination half-life, area under the curve, volume of distribution at steady state, and mean residence time of Groups B and C were 494 and 211, 0.39 and 0.42, 0.044 and 0.059, 80.11 and 87.70, 44 and 49, 38.8 and 57.9, and 12.29 and 12.39 times those of Group A, respectively (all P < 0.05). The ratio of free/total platinum concentration was 2.0-3.1% in plasma, 14.2% in liver tissue, and 14.3% in kidney tissue. Tissue distribution studies showed that the highest platinum concentrations were found in the esophagus, followed by the kidney and liver. Compared with pre-implantation (day 0), there were no significant differences in most hematological indicators in Groups B and C (P > 0.05). Furthermore, histopathologic examination of the kidneys of dogs from Group C revealed no significant kidney damage. Unlike the intravenous CDDP group (Group A), no animals in the implantation groups showed any clinical signs of toxicity. CDDP-NP implants can be used to achieve a smooth pharmacokinetic curve and higher drug concentration, as well as a longer mean residence time at the implantation site, with reduced side effects compared with intravenous CDDP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.