Abstract

The objective of this study was to investigate the effects of osteoprotegerin (OPG) gene therapy on alveolar bone resorption caused by experimental periodontitis in rats, thus forming a foundation for potential clinical applications of OPG gene therapy in the treatment of periodontitis and peri-implantitis. To study the effects of OPG on alveolar bone protection, an experimental periodontitis model was used by placing a bacterial plaque retentive silk ligature in the gingival sulcus around the maxillary second molar tooth, injection of Porphyromonas gingivalis and high carbohydrate diet. A total of 30 Sprague-Dawley rats were randomly divided into three groups, with 10 rats in each group: group I (control) was treated with 10 μL normal saline injection; group II with 10 μL mock vector; and group III with 10 μL local OPG gene transfer by transfection with in vitro constructed pcDNA3.1-human OPG (pcDNA3.1-hOPG). A subperiosteal injection was done adjacent to the second molars on days 0, 7, 14 and 21. Four weeks later, all animals were killed and radiographic, histological and immunohistochemical examinations were performed. Statistical analysis included ANOVA and LSD-Bonferroni test. Group III (OPG gene therapy) had significantly enhanced (p < 0.05) integrated optical density of OPG, had significantly decreased alveolar bone resorption volume and active osteoclast number (p < 0.05) through descriptive histological examination when compared with the other two groups at week 4. Local recombinant OPG plasmid-mediated gene therapy suppresses osteoclastogenesis in vivo and inhibits alveolar bone height reduction caused by experimental periodontitis in rats. OPG gene therapy may be beneficial in preventing progressive periodontal bone loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call