Abstract
Photon upconversion (UC) from red or near-infrared (NIR) light to blue light is promising for in vivo optogenetics. However, the examples of in vivo optogenetics have been limited to lanthanide inorganic UC nanoparticles, and there have been no examples of optogenetics without using heavy metals. Here the first example of in vivo optogenetics using biocompatible heavy metal-free TTA-UC nanoemulsions is shown. A new organic TADF sensitizer, a boron difluoride curcuminoid derivative modified with a bromo group, can promote intersystem crossing to the excited triplet state, significantly improving TTA-UC efficiency. The TTA-UC nanoparticles formed from biocompatible surfactants and methyl oleate acquire water dispersibility and remarkable oxygen tolerance. By combining with genome engineering technology using the blue light-responding photoactivatable Cre-recombinase (PA-Cre), TTA-UC nanoparticles promote Cre-reporter EGFP expression in neurons in vitro and in vivo. The results open new opportunities toward deep-tissue control of neural activities based on heavy metal-free fully organic UC systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.