Abstract

The pathophysiology of early-onset torsion dystonia (TOR1A/DYT1) remains unclear. Like 70% of human mutation carriers, rodent models with ΔGAG mutation such as DYT1 knock-in (KI) mice do not show overt dystonia but have subtle sensorimotor deficits and pattern of abnormal synaptic plasticity within the striatal microcircuits. There is evidence that dysfunction of striatal parvalbumin-reactive (Parv+) fast-spiking interneurons (FSIs) can be involved in dystonic signs. To elucidate the relevance of these GABAergic interneurons in the pathophysiology of DYT1 dystonia, we used in vivo optogenetics to specifically inhibit Parv+ and to detect changes in motor behavior and neuronal activity. Optogenetic fibers were bilaterally implanted into the dorsal striatum of male DYT1 KI mice and wild-type (WT) littermates expressing halorhodopsin (eNpHR3.0) in Parv+ interneurons. While stimulations with yellow light pulses for up to 60 min at different pulse durations and interval lengths did not induce abnormal movements, such as dystonic signs, immunohistochemical examinations revealed genotype-dependent differences. In contrast to WT mice, stimulated DYT1 KI showed decreased striatal neuronal activity, that is, less c-Fos reactive neurons, and increased activation of cholinergic interneurons after optogenetic inhibition of Parv+ interneurons. These findings suggest an involvement of Parv+ interneurons in an impaired striatal network in DYT1 KI mice, but at least short-term inhibition of these GABAergic interneurons is not sufficient to trigger a dystonic phenotype, similar to previously shown optogenetic activation of cholinergic interneurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.