Abstract

Laser ablation (LA) is a promising approach for minimally invasive cancer treatments. Its in vivo applicability is often impeded by the lack of efficient monitoring tools that can help to minimize collateral tissue damage and aid in determining the optimal treatment end-points. We have devised a new, to the best of our knowledge, hybrid LA approach combining simultaneous volumetric optoacoustic (OA) imaging to monitor the lesion progression accurately in real time and 3D. Time-lapse imaging of laser ablation of solid tumors was performed in a murine breast cancer model in vivo by irradiation of subcutaneous tumors with a 100 mJ short-pulsed (${\sim}{5}\;{\rm ns}$∼5ns) laser operating at 1064 nm and 100 Hz pulse repetition frequency. Local changes in the OA signal intensity ascribed to structural alterations in the tumor vasculature were clearly observed, while the OA volumetric projections recorded in vivo appeared to correlate with cross sections of the excised tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call