Abstract

Magnetic resonance imaging is a powerful clinical imaging technique that allows for noninvasive tomographic visualization of anatomic structures with high spatial resolution and soft tissue contrast. However, its application in molecular imaging of cancer has been limited by the lack of sensitivity and detection accuracy in depicting the biochemical expression of these diseases. Here, we combine an ultrasensitive design of superparamagnetic polymeric micelles (SPPM) and an off-resonance saturation (ORS) method to enhance the imaging efficacy of tumor biomarkers in vivo. SPPM nanoparticles encoded with cyclic(RGDfK) were able to target the alpha(v)beta(3)-expressing microvasculature in A549 non-small cell lung tumor xenografts in mice. ORS greatly improved tumor detection accuracy over the conventional T(2)*-weighted method by its ability to turn "ON" the contrast of SPPM. This combination of ORS imaging with a tumor vasculature-targeted, ultrasensitive SPPM design offers new opportunities in molecular imaging of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.