Abstract

.We report a small exploratory study of a methodology for real-time imaging of chemical and physical changes in spinal cords in the immediate aftermath of a localized contusive injury. One hundred separate experiments involving scanning NIR images, one-dimensional, two-dimensional (2-D), and point measurements, obtained in vivo, within a field, on spinal cords surgically exposed between T9 and T10 revealed differences between injured and healthy cords. The collected raw data, i.e., elastic and inelastic emission from the laser probed tissues, combined via the PV[O]H algorithm, allow construction of five images over the first 5 h post injury. Within the larger study, a total of 13 rats were studied using 2-D images, i.e., injured and control. A single 830-nm laser ( diameter round spot) was spatially line-scanned across the cord to reveal photobleaching effects and surface profiles possibly locating a near surface longitudinal artery/vein. In separate experiments, the laser was scanned in two dimensions across the exposed cord surface relative to the injury in a specific pattern to avoid uneven photobleaching of the imaged tissue. The 2-D scanning produced elastic and inelastic emission that allowed construction of PV[O]H images that had good fidelity with the visually observed surfaces and separate line scans and suggested differences between the volume fractions of fluid and turbidity of injured and healthy cord tissue.

Highlights

  • On every level, the costs of spinal cord injury (SCI) are staggering.[1]

  • At each position in the scan, the PV[O]H algorithm is applied to remitted collected light, calculating (1) the apparent volume fraction of the probed tissue filled by fluid and/or fluorescent materials and (2) the apparent turbidity of that fluid

  • In attempting to perform noninvasive in vivo spectroscopic probing for blood and tissues analysis[9] in skin, we needed to deal with the turbidity of biological materials in general

Read more

Summary

Introduction

The costs of spinal cord injury (SCI) are staggering.[1]. We devote tens of billions of dollars each year in addressing the societal costs and that is small compared to human suffering on the individual level. We very briefly present a new algorithm, i.e., the PV[O]H algorithm, our procedures for collecting in vivo data from rats, and the results of an exploratory study to introduce PV[O]H as an imaging modality for rat spinal cord. We performed line scans to explore this possibility and observe the effect of the probing light on the tissue. We will present spinal cord images constructed from two-dimensional (2-D) scanning of an 830-nm laser across the region of interest. At each position in the scan, the PV[O]H algorithm is applied to remitted collected light, calculating (1) the apparent volume fraction of the probed tissue filled by fluid and/or fluorescent materials and (2) the apparent turbidity of that fluid.

Spinal Cord Injury
Imaging and SCI
Experimental
Line Scans
30.5 Move from A to B
27.8 Pre-injury in back to Longer post-injury in front
Two-Dimensional Imaging
28.8 Average Injured Average Control
Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.