Abstract

ABSTRACT The amplitude and time course of muscle length changes were examined in vivo in tethered, flying bumblebees Bombus lucorum. A ‘window’ was cut in the dorsal cuticle and aluminium particles were placed on the exposed dorsal longitudinal muscle fibres. Muscle oscillations were recorded using high-speed video and a high-magnification lens. The amplitude of muscle length changes was 1.9% (S.D.=0.5%, N=7), corresponding to the commonly quoted strain of 1–3% for asynchronous muscle. Higher harmonics, particularly the second, were found in the muscle oscillations and in the wing movements. The second harmonic for wing movements was damped in comparison to that for muscle length changes, probably as a result of compliance in the thoracic linkage. Inclusion of the second harmonic in the driving signal for in vitro experiments on glycerinated fibres generally resulted in a decrease in the work and power, but a substantial increase was found for some fibres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.