Abstract
Postmortem analyses of senile plaques reveal numerous dystrophic processes in their vicinity. We used in vivo multiphoton microscopy of a transgenic model of Alzheimer disease (AD) to simultaneously image senile plaques and nearby neuronal processes. Plaques were labeled by immunofluorescent staining or thioflavine-S and neuronal processes were labeled with a fluorescent dextran conjugate. Imaging of 3-dimensional volumes in the vicinity of plaques revealed subtle changes in neurite geometry in or near diffuse plaques. By contrast, disruptions in neurite morphology, including dystrophic neurites immediately surrounding plaques as well as major alterations in neurite trajectories, were seen in association with thioflavine-S-positive plaques. Nearly half of all labeled processes that came within 50 microm of a thioflavine-S-positive plaque were altered, suggesting a fairly large "halo" of neuropil alterations that extend beyond the discrete border of a thioflavine-S plaque. These results support the hypothesis that compact thioflavine-S-positive plaques disrupt the neuropil in AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Neuropathology & Experimental Neurology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.