Abstract

T cells and macrophages directed against myelin proteins orchestrate the inflammation process in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). So far, assessment of macrophages infiltration or structural alterations has been achieved by in vivo imaging. In this work, we show the infiltration of Cy5.5-labeled T lymphocytes into the brains of EAE rats by reflectance near-infrared fluorescence imaging. T lymphocytes were labeled with Cy5.5-Tat and administered intravenously to naïve or EAE animals. The highest fluorescence signal was observed for EAE animals, which received myelin-activated T cells during the acute phase of the disease. The temporal profile of fluorescence in this group paralleled the pattern of neurological impairment during the acute phase, the remittance and first relapses of EAE. No disease specific fluorescence pattern was observed for EAE animals, which received naïve T cells. However, uptake of Cy5.5-Tat by scavenger cells (e.g. macrophages) following death of labeled T cells in vivo prevents prolonged longitudinal studies. Our work demonstrates that Cy5.5-Tat labeling of T cells is suitable for in vivo fluorescence imaging of inflammation initiation in the EAE model. This approach may particularly be useful for evaluation of novel anti-inflammatory therapies .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call