Abstract

Animals exposed to sevoflurane during development sustain neuronal cell death in their developing brains. In vivo micro-positron emission tomography (PET)/computed tomography imaging has been utilized as a minimally invasive method to detect anesthetic-induced neuronal adverse effects in animal studies. Neonatal rhesus monkeys (postnatal day 5 or 6, 3 to 6 per group) were exposed for 8 h to 2.5% sevoflurane with or without acetyl-L-carnitine (ALC). Control monkeys were exposed to room air with or without ALC. Physiologic status was monitored throughout exposures. Depth of anesthesia was monitored using quantitative electroencephalography. After the exposure, microPET/computed tomography scans using F-labeled fluoroethoxybenzyl-N-(4-phenoxypyridin-3-yl) acetamide (FEPPA) were performed repeatedly on day 1, 1 and 3 weeks, and 2 and 6 months after exposure. Critical physiologic metrics in neonatal monkeys remained within the normal range during anesthetic exposures. The uptake of [F]-FEPPA in the frontal and temporal lobes was increased significantly 1 day or 1 week after exposure, respectively. Analyses of microPET images recorded 1 day after exposure showed that sevoflurane exposure increased [F]-FEPPA uptake in the frontal lobe from 0.927 ± 0.04 to 1.146 ± 0.04, and in the temporal lobe from 0.859 ± 0.05 to 1.046 ± 0.04 (mean ± SE, P < 0.05). Coadministration of ALC effectively blocked the increase in FEPPA uptake. Sevoflurane-induced adverse effects were confirmed by histopathologic evidence as well. Sevoflurane-induced general anesthesia during development increases glial activation, which may serve as a surrogate for neurotoxicity in the nonhuman primate brain. ALC is a potential protective agent against some of the adverse effects associated with such exposures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.