Abstract

Damage to the plant water transport system through xylem cavitation is known to be a driver of plant death in drought conditions. However, a lack of techniques to continuously monitor xylem embolism in whole plants invivo has hampered our ability to investigate both how this damage propagates and the possible mechanistic link between xylem damage and tissue death. Using optical and fluorescence sensors, we monitored drought-induced xylem embolism accumulation and photosynthetic damage invivo throughout the canopy of a drought-resistant conifer, Callitris rhomboidea, during drought treatments of c. 1 month duration. We show that drought-induced damage to the xylem can be monitored invivo in whole trees during extended periods of water stress. Under these conditions, vulnerability of the xylem to cavitation varied widely among branchlets, with photosynthetic damage only recorded once > 90% of the xylem was cavitated. The variation in branchlet vulnerability has important implications for understanding how trees like C. rhomboidea survive drought, and the high resistance of branchlets to tissue damage points to runaway cavitation as a likely driver of tissue death in C. rhomboidea branch tips.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call