Abstract

In this study, the phase I metabolism of fenthion was monitored in three common vegetables in different chamber situations via an in vivo solid-phase microextraction method. The phase I metabolic pathways of fenthion were evaluated based on the in vivo monitoring results and their comparisons among the chamber situations. Enzyme catalysis was found to play a basic and dominant role, whereas light catalysis could promote subsequent transformations that were difficult for enzyme catalysis. Moreover, according to the concentrations of the metabolites and their toxicity, the total concentrations and total toxicity weighted concentrations were calculated to reveal actual residual levels. The relative total and weighted exposure potency values were calculated to account for the fact that only the parent pesticide was considered in the diet exposure risk assessment. In result, both total and weighted approaches indicated a much higher exposure risk. Present study uncovered the potential pesticide exposure risk associated with phase I metabolism and highlighted the toxicity weighted approach, both of which more realistically reflect the exposure risk than the parent compound concentration does. In general, this study may facilitate further illustrating the phase I metabolism of ubiquitous agricultural pesticides, and provide a more realistically understanding of their exposure risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call