Abstract

Sub-micron phase-change contrast agents (PCCAs) have been proposed as a tool for ultrasound molecular imaging based on their potential to extravasate and target extravascular markers and also because of the potential to image these contrast agents with a high contrast-to-tissue ratio. We compare in vivo ultrasound molecular imaging with targeted low-boiling-point PCCAs and targeted microbubble contrast agents. Both agents were targeted to the intravascular (endothelial) integrin αvß3via a cyclic RGD peptide (cyclo-Arg–Gly–Asp–D-Tyr–Cys) mechanism and imaged in vivo in a rodent fibrosarcoma model, which exhibits angiogenic microvasculature. Signal intensity was measured using two different techniques, conventional contrast-specific imaging (amplitude/phase modulation) and a droplet vaporization imaging sequence, which detects the unique signature of vaporizing PCCAs. Data indicate that PCCA-specific imaging is more sensitive to small numbers of bound agents than conventional contrast imaging. However, data also revealed that contrast from targeted microbubbles was greater than that provided by PCCAs. Both control and targeted PCCAs were observed to be retained in tissue post-vaporization, which was expected for targeted agents but not expected for control agents. The exact mechanism underlying this observation remains unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.