Abstract

Interstitial photodynamic therapy (I-PDT) is a promising therapy considered for patients with locally advanced cancer. In I-PDT, laser fibers are inserted into the tumor for effective illumination and activation of the photosensitizer in a large tumor. The intratumoral light irradiance and fluence are critical parameters that affect the response to I-PDT. In vivo animal models are required to conduct light dose studies, to define optimal irradiance and fluence for I-PDT. Here we describe two animal models with locally advanced tumors that can be used to evaluate the response to I-PDT. One model is the C3H mouse bearing large subcutaneous SCCVII carcinoma (400-600mm3). Using this murine model, multiple light regimens with one or two optical fibers with cylindrical diffuser ends (cylindrical diffuser fiber, CDF) can be used to study tumor response to I-PDT. However, tissue heating may occur when 630nm therapeutic light is delivered through CDF at an intensity ≥60mW/cm and energy ≥100J/cm. These thermal effects can impact tumor response while treating locally advanced mice tumors. Magnetic resonance imaging and thermometry can be used to study these thermal effects. A larger animal model, New Zealand White rabbit with VX2 carcinoma (~5000mm3) implanted in either the sternomastoid (neck implantation model) or the biceps femoris muscle (thigh implantation model), can be used to study I-PDT with image-based pretreatment planning using computed tomography. In the VX2 model, the light delivery can include the use of multiple laser fibers to test light dosimetry and delivery that are relevant for clinical use of I-PDT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call