Abstract

In vivo mouse models of inflammatory arthritis are extensively used to investigate pathogenic mechanisms governing inflammation-driven joint damage. Two commonly utilized models include collagen-induced arthritis (CIA) and methylated bovine serum albumin (mBSA) antigen-induced arthritis (AIA). These offer unique advantages for modeling different aspects of human disease. CIA involves breach of immunological tolerance resulting in systemic autoantibody-driven arthritis, while AIA results in local resolving inflammatory flares and articular T cell-mediated damage. Despite limitations that apply to all animal models of human disease, CIA and AIA have been instrumental in identifying pathogenic mediators, immune cell subsets and stromal cell responses that determine disease onset, progression, and severity. Moreover, these models have enabled investigation of disease phases not easily studied in patients and have served as testing beds for novel biological therapies, including cytokine blockers and small molecule inhibitors of intracellular signaling that have revolutionized rheumatoid arthritis treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call