Abstract

A distinctive property of foraminiferan tubulin is that, in addition to microtubules (MTs), it exists in an alternate assembly state, helical filaments. Here, we have examined in vivo MT dynamics during experimentally induced conversions between these two assembly states in the reticulopods of the marine foraminiferan Allogromia laticollaris. Exposure to high extracellular concentrations of Mg2+ (165 mM) resulted in a complete conversion of MTs into helical filaments. However, Mg2+ treatment also induced a retrograde movement of organelles and cytoplasm, and it was necessary to inhibit this response in order to assess the effects of assembly state changes on individual MTs. This was accomplished by simultaneous treatment with high extracellular Mg2+ and 2,4-dinitrophenol (DNP). The resulting loss in MTs was detected by video enhanced DIC (VEC-DIC) microscopy as either an endwise MT shortening (at an average rate of 474 μm/min) or transformation into one or more irregularly shaped fibrils, which we termed residual fibrils. Correlative immunofluorescence and video microscopy showed residual fibrils to be composed of helical filaments. Removal of extracellular Mg2+/DNP initiated a reversal in assembly state, from helical filaments into MTs, which was completed within 5 min. VEC-DIC microscopy showed that MTs reformed by an endwise lengthening at an average rate of 216 μm/min. These results suggest that conversion between alternate tubulin assembly states provides a more rapid means to build and dismantle MTs than conventional subunit-driven pathways. © 1996 Wiley-Liss, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call