Abstract
A new skin protectant was developed for use on conditions involving partial-thickness skin loss such as severe incontinence-associated dermatitis. This new formulation is based on a cyanoacrylate chemistry designed to polymerize in situ and create a breathable film able to protect the skin surface from external irritants. This film provides an environment favorable for healing to occur beneath the film. To evaluate the characteristics of the novel chemistry, we devised a preclinical testing strategy comprising three different animal models. The data from all three models was considered collectively to create an overall assessment of effectiveness. A guinea pig model was used to evaluate the barrier efficacy of the new product in protecting intact skin from irritation. A porcine partial-thickness wound model was used to evaluate the efficacy of the product in helping control minor bleeding and exudate. A similar model was also used to assess the process of reepithelialization in the continued presence of an irritant. In the first model, untreated sites had 8.5 times more irritation than sites covered with the new product (p < 0.001). In the second model, a single application of the new product successfully attached to intact peri-wound skin and to denuded, weepy skin. It significantly reduced the amount of fluid weeping from the wounds (p ≤ 0.001) and continued to perform throughout a 96 hours experiment. In the third model, the percent of reepithelialization was significantly greater for the wounds covered with the new product than for the control wounds (p = 0.003; on average, 18.3% greater, with a 95% confidence interval of 9.2% to 27.5%). These results suggest that the new skin protectant protects intact and denuded skin from irritants and provides an environment favorable to healing, offering promise for the management of various conditions involving loss of epidermis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.