Abstract

AZD8233, a liver-targeting antisense oligonucleotide (ASO), inhibits subtilisin/kexin type 9 protein synthesis. It is a phosphorothioated 3-10-3 gapmer with a central DNA sequence flanked by constrained 2'-O-ethyl 2',4'-bridged nucleic acid (cEt-BNA) wings and conjugated to a triantennary N-acetylgalactosamine (GalNAc) ligand at the 5'-end. Herein we report the biotransformation of AZD8233, as given by liver, kidney, plasma and urine samples, after repeated subcutaneous administration to humans, mice, rats, rabbits, and monkeys. Metabolite profiles were characterized using liquid chromatography high-resolution mass spectrometry. Metabolite formation was consistent across species, mainly comprising hydrolysis of GalNAc sugars, phosphodiester-linker hydrolysis releasing the full-length ASO, and endonuclease-mediated hydrolysis within the central DNA gap followed by exonuclease-mediated 5'- or 3'-degradation. All metabolites contained the 5'- or 3'-cEt-BNA terminus. Most shortmer metabolites had the free terminal alcohol at 5'- and 3'-positions of ribose, although six were found retaining the terminal 5'-phosphorothioate group. GalNAc conjugated shortmer metabolites were also observed in urine. Synthesized metabolite standards were applied for (semi)quantitative metabolite assessment. Intact AZD8233 was the major component in plasma, whereas the unconjugated full-length ASO was predominant in tissues. In plasma, most metabolites were shortmers retaining the 3'-cEt-BNA terminus, whereas metabolites containing the 5'- or 3'-cEt-BNA terminus were detected in both tissues and urine. All metabolites in human plasma were also detected in all nonclinical species, and all human urine metabolites were detected in monkey urine. In general, metabolite profiles in animal species were qualitatively similar and quantitatively exceeded the exposures of the circulating metabolites in humans at the doses studied. SIGNIFICANCE STATEMENT: This study presents metabolite identification and profiling of AZD8233, an N-acetylgalactosamine-conjugated antisense oligonucleotide (ASO), across species. A biotransformation strategy for ASOs was established by utilizing biologic samples collected from toxicology and/or clinical studies and liquid chromatography high-resolution mass spectrometry analysis without conducting bespoke radiolabeled absorption, distribution, metabolism, and excretion studies. The generated biotransformation package was considered adequate by health authorities to progress AZD8233 into a phase 3 program, proving its applicability to future metabolism studies of ASOs in drug development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.