Abstract

Two alternative metabolic pathways, acyl glucuronidation and acyl-CoA formation, are implicated in the generation of reactive acylating metabolites of carboxylic acids. Here, we describe studies that determine the relative importance of these two pathways in the metabolic activation of a model substrate, 2-phenylpropionic acid (2-PPA), in vivo in rats. Male Sprague-Dawley rats were pretreated with and without (-)-borneol (320 mg/kg i.p.), an inhibitor of acyl glucuronidation, or trimethylacetic acid (TMA, 500 mg/kg i.p.), an inhibitor of acyl-CoA formation, before receiving 2-PPA (racemic, 130 mg/kg). After administration of 2-PPA, livers were collected over a 2-h period and analyzed for 2-PPA acyl glucuronidation and 2-PPA-CoA formation by high-performance liquid chromatography. Covalent binding was measured by scintillation counting of washed liver protein precipitates. Results showed that pretreatment with TMA led to a 49% decrease in covalent binding of 2-PPA to liver proteins, when a 64% decrease in the exposure of 2-PPA-CoA was observed. Conversely, 95% inhibition of acyl glucuronidation by (-)-borneol, led to a 23% decrease in covalent binding to protein. These results suggest that metabolic activation by 2-PPA-CoA formation contributes to covalent adduct formation to protein in vivo to a greater extent than metabolic activation by acyl glucuronidation for this model substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.