Abstract
This study describes the first in vivo acoustic attenuation measurements of breast tissue undertaken using a novel phase-insensitive detection technique employing a differential pyroelectric sensor. The operation of the sensor is thermal in nature, with its output signal being dictated by the acoustic power integrated over its surface. The particularly novel feature of the sensor lies in its differential principle of operation, which significantly enhances its immunity to background acoustic and vibration noise. A large area variant of the sensor was used to detect ultrasonic energy generated by an array of 14 discrete 3.2-MHz plane piston transducers, transmitted through pendent breasts in water. The transduction and reception capability represent key parts of a prototype Quantitative Ultrasound Computed Tomography Test Facility developed at the National Physical Laboratory to study the efficacy of phase-insensitive ultrasound computed tomography of breast phantoms containing a range of appropriate inclusions, in particular, the measurement uncertainties associated with quantitative reconstructions of the acoustic attenuation coefficient. For this study, attenuation coefficient measurements were made using 1-D projections on 12 nominally healthy study volunteers, whose age ranged from 19 to 65 years. Averaged or bulk attenuation coefficient values were generated in the range 1.7-4.6 dBcm <sup>-1</sup> at 3.2 MHz and have been compared with existing literature, derived from in vivo and ex vivo studies. Results are encouraging and indicate that the relatively simple technique could be applied as a robust method for assessing the properties of breast tissue, particularly the balance of fatty (adipose) and fibroglandular components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.