Abstract

ABSTRACTThe purpose of this study was to create a lower forelimb model of the Thoroughbred horse for measuring the force in the superficial and deep digital flexor tendons (SDFT and DDFT), and the suspensory ligament (SL) during a trot. The mass, centers of gravity, and inertial moments in the metacarpus, pastern, and hoof segments were measured in 4 Thoroughbred horses. The moment arms of the SDFT, DDFT, and SL in the metacarpophalangeal (fetlock) and distal interphalangeal (coffin) joints were measured in 7 Thoroughbred horses. The relationship between the fetlock joint angle and the force in the SL was assessed in 3 limbs of 2 Thoroughbred horses. The forces in the SDFT, DDFT, and SL during a trot were also measured in 7 Thoroughbred horses. The mass of the 3 segments, and the moment arms of the SDFT and DDFT in the fetlock joint of the Thoroughbred horses were smaller than those of the Warmblood horses, whereas the other values were almost the same in the 2 types. The calculated force in the SDFT with this Thoroughbred model reached a peak (4,615 N) at 39.3% of the stance phase, whereas that in the DDFT reached a peak (5,076 N) at 51.2% of the stance phase. The force in the SL reached a peak (11,957 N) at 49.4% of the stance phase. This lower forelimb model of the Thoroughbred can be applied to studying the effects of different shoe types and change of hoof angle for the flexor tendon and SL forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call