Abstract

Compartmental tracer kinetic models currently used for analysis of dynamic contrast-enhanced MRI data yield poor fittings or parameter values that are unphysiological in necrotic regions of the tumor, as these models only describe microcirculation in perfused tissue. In this study, we explore the use of Fick's law of diffusion as an alternative method for analysis of dynamic contrast-enhanced MRI data in the necrotic regions. Xenografts of various human cancer cell lines were implanted in 14 mice that were subjected to dynamic contrast-enhanced MRI performed using a spoiled gradient recalled sequence. Tracer concentration was estimated using the variable flip angle technique. Poorly perfused and necrotic tumor regions exhibiting delayed and slow enhancement were identified using a k-means clustering algorithm. Tracer behavior in necrotic regions was shown to be consistent with Fick's diffusion equation and the in vivo gadolinium diffusivity was estimated to be 2.08 (±0.88) × 10(-4) mm(2)/s. This study proposes the use of gadolinium diffusivity as an alternative parameter for quantifying tracer transport within necrotic tumor regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.