Abstract

The human corticospinal pathway is organized in a body-centric (i.e., somatotopic) manner that begins in cortical cell bodies and is maintained in the axons as they project through the midbrain on their way to spinal motor neurons. The subcortical segment of this somatotopy has been described using histological methods on non-human primates but only coarsely validated from lesion studies in human patient populations. Using high definition fiber tracking (HDFT) techniques, we set out to provide the first in vivo quantitative description of the midbrain somatotopy of corticospinal fibers in humans. Multi-shell diffusion imaging and deterministic fiber tracking were used to map white matter bundles that originate in the neocortex, navigate complex fiber crossings, and project through the midbrain. These fiber bundles were segmented into premotor (dorsal premotor, ventral premotor, and supplementary motor area) and primary motor sections based on the cortical origin of each fiber streamline. With HDFT, we were able to reveal several unique corticospinal patterns, including the cortical origins of ventral premotor fibers and small (∼ 1-2 mm) shifts in the midbrain location of premotor versus primary motor cortex fibers. More importantly, within the relatively small diameter of the pyramidal tracts (∼ 5 mm), we were able to map and quantify the direction of the corticospinal somatotopy. These results show how an HDFT approach to white matter mapping provides the first in vivo, quantitative mapping of subcortical corticospinal topographies at resolutions previously only available with postmortem histological techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call