Abstract

The aim of the present study was to assess the feasibility of magnetization transfer-prepared zero echo time (ZTE) imaging of the lung in vivo at high field strength [4.7 Tesla) T] in mice. Eighteen C57BL/10 mice underwent MRI examinations in a 4.7T MR-scanner. A three-dimensional ZTE sequence was applied for lung imaging combined with a Gaussian MT-prepulse, which was followed by a train of 100 ZTE imaging readouts. Degree of MT was assessed by calculation of the magnetization transfer ratio (MTR). Direct saturation was estimated using Bloch equation simulations based on T1 measurements. The line-width of pulmonary tissue was estimated using T2* measurements. Experimental MTR-values of nonpulmonary tissues obtained with ZTE exhibited the characteristics known from conventional MT-sequences (skeletal muscle and liver: high values; fatty tissue: low values). Lung tissue demonstrated MTR-values in between fatty tissue and liver tissue. Direct saturation could be estimated by the Bloch simulation; however, an adequate approximation was only possible for T2 values nearly in the range of parenchymal organs. Pulmonary MT measurements at high field strength using the proposed MT-ZTE sequence is feasible; however, estimation of direct saturation remains challenging. Magn Reson Med 76:156-162, 2016. © 2015 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.