Abstract

The possibility of in vivo magnetic particle targeting by the locally induced gradient field of interstitial ferromagnetic implants, magnetized in an ex vivo uniform field, is evaluated by a modelling analysis. A simplified 3D model analogous to a torso size, with a continuous laminar flow through the volume with the typical velocity and viscosity values of in vivo blood flow and a ferromagnetic seed inserted in the volume center vertical to the flow, is used to evaluate the magnetic particle capturing efficiency by the seed, which is magnetized in a uniform field. The initial modelling results indicate that for 1–10 μm iron oxide particles transporting with a blood flow of 0.5–5 mm/s, the seeds of tungsten steel, magnet steel and cast cobalt all present an effective particle capturing efficiency, which shows a fast initial increase and a slow saturation with the increasing magnetic field, a quasilinear increase with the increasing particle size, and a nonlinear decrease with the increasing blood velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.