Abstract

In biomechanics, the knowledge of accurate location of a joint center is essential because equilibration of the external loads and muscular forces about the joint is performed about this specific point. This paper focuses on the location of centers of gleno-humeral joint and scapulo-thoracic joint in a subject moving their arm in the scapular plane with a magnitude of 120°. Biplanar radiography with successive exposures has been used locating anatomical axes of bones. Geometric models of bones were defined allowing access to bone morphology by superposing model projections onto X-ray imaged bone contours. Functional models were used so as to represent the behavior in motion of shoulder joints. These techniques allowed us to access to results describing the linear and angular relative displacements of the shoulder bones between two different postures. The gleno-humeral and scapulo-thoracic finite joint centers (F H and F S ) are first defined through the location of the corresponding helical axis of motion (HAM) moving the joint from positions occupied in initial and final postures. The gleno-humeral and scapulo-thoracic mean joint centers (M H and M S ) are then calculated using a new technique, which defines that each joint center has the point having the smallest migrations while moving continuously from initial to final postures. This allows for the analysis of the linear and angular clearances, which affect joint center migration. The whole continuous movement has been parsed into several steps to test the stability of the mean joint center throughout the motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call