Abstract

The selective A2A receptor antagonist [3H]SCH 58261 was injected intravenously in mice and the radioactivity accumulating in various brain regions was determined by tissue sampling. Radioactivity levels in regions of interest such as the striatum were highest 15 min after injection and quickly declined thereafter (30 min and 1 h postinjection) in a time-dependent manner. The amount of labelling was ranked as follows: striatum (4.6 +/- 0.3 fmol/mg protein) >> cortex > hippocampus > pons = hypothalamus > cerebellum (0.5 +/- 0.05 fmol/mg protein). Specific labelling of the A2A receptor occurred in striatum and cortex because significantly less radioactivity accumulated in these areas from adenosine A2A receptor knockout mice as compared to wild-type littermates. In control outbred CD1 mice, a striatum-to-cerebellum ratio of 7.6 +/- 0.6 was found. At 30 min postinjection, the nonselective adenosine receptor antagonist caffeine reduced the radioactivity due to [3H]SCH 58261 in the striatum by 32% at 1 mg/kg i.p. and by 66% at the stimulant dose of 6.25 mg/kg i.p. Radioactivity in the striatum was lowered, respectively, by 66 and 86% 30 min after injection of 3 or 10 mg/kg i.p. doses of unlabelled SCH 58261. The present results indicate that [3H]SCH 58261 directly labels striatal A2A receptors in vivo. Thus [3H]SCH 58261 is an excellent tool for studying brain distribution and A2A receptor occupancy of various compounds ranging from xanthines, such as caffeine, to other A2A antagonists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.