Abstract

Little is known about the in vivo kinematics of mobile-bearing total knee arthroplasty, especially at deep knee flexion under weight-bearing conditions. In vivo knee kinematics was analyzed for 12 patients (13 knees) implanted with PFC-Sigma Rotating Platform-Flex (RP-F) prostheses. Under fluoroscopic surveillance, each patient performed weight-bearing deep knee bending. Motion between each component was analyzed using a two- to three-dimensional registration technique, which uses computer-assisted design models to reproduce the spatial positions of the femoral and tibial components and a polyethylene insert (implanted with four tantalum beads) from single-view fluoroscopic images. External rotation of the femoral component on the tibial tray was mostly caused by rotation of the polyethylene insert on the tibial tray. The femoral component typically exhibited a central pivot pattern from extension to 80° relative to the tibial component. From 80° to 120°, bilateral condyles moved backward. In an upright standing position, the femoral component had already rotated externally relative to the tibial component by 7.8±7.5°, and the polyethylene insert had also rotated 8.2°±6.2° externally on the tibial tray. The present results demonstrated that mobile-bearing mechanisms with this prosthesis might reduce articular contact stress in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.