Abstract

Dynamitin is a subunit of the dynactin complex regulating microtubule-dependent motor functions, and MacMARCKS (Macrophage-enriched myristoylated alanine-rich protein kinase C substrate) is a major protein kinase C substrate regulating integrin activation. The interaction between dynamitin and MacMARCKS has been implicated in integrin-dependent cell spreading. However, the in vivo interaction of these two proteins in living cells has not been demonstrated. Spatial and temporal information about the interaction is also lacking. In this study, we used the fluorescent resonance energy transfer method to demonstrate in vivo interaction between MacMARCKS and dynamitin with cyan fluorescent protein (CFP)-conjugated dynamitin as the donor fluorophore and yellow fluorescent protein (YFP)-conjugated MacMARCKS as the acceptor fluorophore. The interaction of these two fusion proteins was studied both in vitro and in vivo, and typical fluorescent resonance energy transfer was observed; the CFP emission peak increased while the YFP emission peak decreased when protein interaction was abolished. Spatial and temporal information was obtained in RAW macrophage cells. In resting macrophage cells, dynamitin-MacMARCKS interaction is concentrated at the cell periphery, although the majority of dynamitin is distributed at the perinuclear region of the cells. When cells were treated with phorbol 12-myristate 13-acetate, both proteins concentrated to perinuclear regions of the cells, and yet the interaction disappeared as the cell spread. Similar events were also observed in 293 cells. Thus, we conclude that dynamitin and MacMARCKS indeed interact in living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call