Abstract

Addition of 200 nM β-amyloid 1-42 (Abeta) to a rat hippocampal slice impairs the induction of a long-term post-tetanic potentiation (LTP) of population spike (PS) in pyramidal neurons of the CA1 field of hippocampus. Intraperitoneal injection into the rat of the mitochondria-targeted plastoquinone derivative SkQR1 (1 µmol/kg of weight given 24 h before the slices were made) abolishes the deleterious effect of Abeta on LTP. These data demonstrate that SkQR1 therapy is able to compensate the Abeta-induced impairments of long-term synaptic plasticity in the hippocampus, which are the main cause of loss of memory and other cognitive functions associated with Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.