Abstract

D-P-Hydroxyphenylglycine (D-HPG) is a precursor required for the synthesis of semi-synthetic antibiotics. This unnatural amino acid can be produced by a transformation reaction mediated by D-hydantoinase (D-HDT) and d-amidohydrolase. In this study, a method was developed to integrate production and immobilization of recombinant D-HDT in vivo. This was approached by first fusion of the gene encoding D-HDT with phaP (encoding phasin) of Ralstonia eutropha H16. The fusion gene was then expressed in the Escherichia coli strain that carried a heterologous synthetic pathway for polyhydroxyalkanoate (PHA). As a result, d-HDT was found to associate with isolated PHA granules. Further characterization illustrated that D-HDT immobilized on PHA exhibited the maximum activity at pH 9 and 60°C and had a half-life of 95 h at 40°C. Moreover, PHA-bound d-HDT could be reused for 8 times with the conversion yield exceeding 90%. Overall, it illustrates the feasibility of this approach to facilitate in vivo immobilization of enzymes in heterologous E. coli strain, which may open a new avenue of enzyme application in industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.