Abstract

The intestinal epithelium is a repetitive sheet of crypt and villus units with stem cells at the bottom of the crypts. During postnatal development, crypts multiply via fission, generating 2 daughter crypts from 1 parental crypt. In the adult intestine, crypt fission is observed at a low frequency. Using intravital microscopy in Lgr5EGFP-Ires-CreERT2 mice, we monitored individual crypt dynamics over multiple days with single-cell resolution. We discovered the existence of crypt fusion, an almost exact reverse phenomenon of crypt fission, in which 2 crypts fuse into 1 daughter crypt. Examining 819 crypts in 4 mice, we found that 3.5% ± 0.6% of all crypts were in the process of fission, whereas 4.1 ± 0.9% of all crypts were undergoing crypt fusion. As counteracting processes, crypt fission and fusion could regulate crypt numbers during the lifetime of a mouse. Identifying the mechanisms that regulate rates of crypt fission and fusion could provide insights into intestinal adaptation to altered environmental conditions and disease pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call