Abstract

The aim of this study was to provide a comprehensive summary of in-vivo imaging techniques of the aqueous outflow system and discuss its role in improving our understanding of glaucoma pathogenesis and management. Our understanding of the aqueous outflow system is largely derived from ex-vivo studies. Recent innovations in imaging technology and techniques enable in-vivo evaluation of the conventional outflow system in real-time. Optical coherence tomography allows for noninvasive, high-resolution, volumetric imaging of ocular tissues. Dynamic structural changes have been observed at the trabecular meshwork and Schlemm's canal. In parallel, aqueous angiography using injected tracers show a similar dynamism with variable and pulsatile flow signals. In-vivo imaging enable real-time evaluation of the conventional aqueous outflow pathway. This emerging field shows great promise to expand our understanding of the pathogenesis and treatment of glaucoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.