Abstract

The effect of the calcium channel blocker azelnidipine on the redox status of a murine hypertension model was analyzed and imaged using in vivo low frequency electron paramagnetic resonance (EPR). A murine two kidney-one clip (2K1C) hypertension model was produced by a clipping of the right renal artery. The resulting hypertensive mice were treated with low-dose azelnidipine (1 mg/kg/d), with high-dose azelnidipine (3 mg/kg/d) or without azelnidipine (HT group). An EPR system equipped with a loop-gap resonator and an imaging system was employed. Redox status was evaluated as organ reducing activity measured by means of the decay rate (half-lives) of the spin probe 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (Carbamoyl-PROXYL). Four weeks after clipping the mice demonstrated hypertension as expected. After the additional 2 weeks of azelnidipine treatments, the Carbamoyl-PROXYL half-lives of the Low and High azelnidipine groups measured in the upper abdominal area were significantly shorter than those of the HT group, suggesting improvements in the reducing activity. The blood pressures of the three groups showed no significant differences at this time, and there was no correlation between the renal reducing activity and either blood pressure or serum creatinine values. EPR imaging studies revealed that the improvement in abdominal reducing activity was mainly recognized in the kidney but not in the liver. These results indicate that azelnidipine ameliorates renal redox status through an improvement in reducing activity independent of blood pressure control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.