Abstract

Muscle cells have a remarkable capability to repair plasma membrane lesions. Mutations in dysferlin (dysf) are known to elicit a progressive myopathy in humans, probably due to impaired sarcolemmal repair. We show here that loss of Dysf and annexin A6 (Anxa6) function lead to myopathy in zebrafish. By use of high-resolution imaging of myofibers in intact animals, we reveal sequential phases in sarcolemmal repair. Initially, membrane vesicles enriched in Dysf together with cytoplasmic Anxa6 form a tight patch at the lesion independently of one another. In the subsequent steps, annexin A2a (Anxa2a) followed by annexin A1a (Anxa1a) accumulate at the patch; the recruitment of these annexins depends on Dysf and Anxa6. Thus, sarcolemmal repair relies on the ordered assembly of a protein-membrane scaffold. Moreover, we provide several lines of evidence that the membrane for sarcolemmal repair is derived from a specialized plasma membrane compartment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.