Abstract

It is difficult to completely remove carcinomas in unguided ablative surgery because they cannot be distinguished with the unaided human eye. Therefore, in order to precisely visualize tiny tumors and the borders between cancerous lesions and normal tissues, we have been developing fluorescence probes activatable only in cancer cells. We previously reported the hydroxymethylrhodamine green (HMRG)-based fluorescence probe gGlu-HMRG for γ-glutamyltransferase (GGT), which is overexpressed in a variety of cancer cells, and we showed that it enables in vivo rapid detection of human ovarian cancer SHIN-3 nodules with a high tumor-to-background (T/B) fluorescence ratio in model mice. However, cancer cell lines with low GGT expression could hardly be detected with gGlu-HMRG. Here we developed two new HMRG-based fluorescence probes for the cathepsin family of cysteine proteases, including cathepsin B (CatB) and cathepsin L (CatL), which show increased expression and/or activity, secretion, and altered localization in many kinds of cancer cells. The developed probes, Z-Phe-Arg-HMRG and Z-Arg-Arg-HMRG, are colorless and nonfluorescent at the physiological pH of 7.4, but are hydrolyzed to HMRG upon reaction with purified cathepsins, resulting in a more than 200-fold fluorescence increase. These probes could visualize human ovarian cancer cell lines SHIN-3, SK-OV-3, and OVCAR-3, of which the latter two were hardly detectable with gGlu-HMRG. Z-Phe-Arg-HMRG showed higher applicability than Z-Arg-Arg-HMRG for in vivo imaging, and we confirmed that 0.5-mm-sized SK-OV-3 tumor nodules disseminated on the mesentery in a mouse model could be rapidly visualized by Z-Phe-Arg-HMRG, with a T/B fluorescence ratio of 4.2. Further, intraperitoneally disseminated tumor could be visualized in real time in vivo by fluorescence endoscopy after spraying Z-Phe-Arg-HMRG, with a T/B ratio of 3. In conclusion, our HMRG-based activatable probes targeted to cathepsins have expanded the detectable range of cancers, and appear to be suitable for clinical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call