Abstract

Tissue uptake of a fully extractable MR detectable tracer, deuterated water (D2O), was compared with that of a less extractable contrast agent, Gadolinium-DTPA-dimeglumine (Gd-DTPA), in rodent tumor and muscle tissue. This dual tracer method allowed calculation of relative (to muscle) tissue perfusion and extraction fraction of Gd-DTPA in each image pixel in vivo. Solutions of Gd-DTPA and D2O were injected intravenously into Fisher female rats (n = 9) with R3230 mammary adenocarcinomas implanted in the hind limb. Perfusion rate was approximately two times greater (P < 0.005 by paired t test) in tumor than in muscle. Gd-DTPA extraction fraction at the interface between tumor and muscle was 2.0 times the extraction fraction in normal muscle (P < 0.005 by paired t test). Extraction fraction at the tumor center was 1.6 times the extraction fraction in muscle (P < 0.01 by paired t test). High extraction fraction of Gd-DTPA correlated with high capillary permeability determined from Evans Blue staining. Low molecular weight Gd-DTPA derivatives are widely used in clinical practice, and their extraction fractions are crucial determinants of image contrast during the first few passes of the contrast agent bolus. Therefore spatially resolved measurements of contrast agent extraction fractions obtained in vivo have significant clinical utility. The data demonstrate that extraction of low molecular weight tracers is sensitive to increased permeability in tumor vasculature and that this increased permeability can be imaged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call