Abstract
Brain metastatic breast cancer is challenging to treat due to the presence of the blood-brain barrier (BBB) and a lack of ability to target precisely. Most drugs fail to cross the BBB limiting their effectiveness. To combat this problem, a brain metastatic breast cancer cell (MDA-MB-831) membrane-coated polymeric nanoparticle (CCNP) was synthesized. The small size (∼70 nm) and anionic surface charge (−20 mV) achieved during formulation allowed for high penetration and retention in the brain when compared to the PEGylated polymeric nanoparticle alone (mPEG-PLGA or NP). Doxorubicin-loaded CCNP showed high preferential cytotoxicity in vitro. Live (4–120 h) and ex vivo near-infrared imaging in nude mice showed extended circulation and retention of CCNP compared to uncoated nanoparticles. These data indicate that drug/dye-loaded CCNPs demonstrate excellent potential for cancer theranostics of brain metastatic breast tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.