Abstract

Hfq and Crc regulate P. aeruginosa carbon catabolic repression at the post-transcriptional level. In vitro work has shown that Hfq binds the target RNAs and Crc stabilizes the complex. A third element in the regulation is the small RNA CrcZ, which sequesters the Crc-Hfq complex under no catabolic repression conditions, allowing the translation of the target mRNAs. A ΔcrcZ mutant was generated and presented fitness defects and alterations in its virulence potential and antibiotic resistance. Eight pseudo-revertants that present different degrees of fitness compensation were selected. Notably, although Hfq is the RNA binding protein, most mutations occurred in Crc. This indicates that Crc is strictly needed for P. aeruginosa efficient carbon catabolic repression in vivo. The compensatory mutations restore in a different degree the alterations in antibiotic susceptibility and virulence of the ΔcrcZ mutant, supporting that Crc plays a fundamental role linking P. aeruginosa metabolic robustness, virulence, and antibiotic resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call