Abstract

Mouse cauda epididymis were in-vivo transfected using the lipid FuGENE 6 as gene vector. Two gene constructions were employed: the p-GeneGRIP which codifies for the Green Fluorescent Protein (GFP) and the pSEAP-control that expresses an alkaline phosphatase as a secretion. Transfection was detected by fluorescence and appeared in the nucleus and cytoplasm of epithelial cells. Transfection was observed in 39.70% of cells after 2 days and in 31.77% after 7 days, and then diminished progressively. Moreover, the presence of the transgene in the DNA isolated from treated epididymides was observed by polymerase chain reaction. GFP gene expression appeared in large areas of the cauda epididymis and it was observed exclusively in the cytoplasm of epithelial cells. GFP gene expression occurred during 2 weeks after gene injection and occupied 32.24, 29.98 and 22.37% of the area of the tubules when analyzed 2, 7 and 15 days after gene injection. The cauda was also analyzed in toto and showed similar results. The use of the pSEAP-control gene showed that cauda epididymis secretions can also be modified by the transfection procedure. A significant increase of alkaline phosphatase activity appeared in the epididymal fluids 7 days after gene injection. These results indicate that transfection procedures could be an important tool in the future to study epididymal physiology or to change the fertilizing ability of spermatozoa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call