Abstract

The cerebral cortex is organized in vertical columns that contain neurons with similar functions. The cellular micro-architecture of such columns is an essential determinant of brain dynamics and cortical information processing. However, a detailed understanding of columns is incomplete, even in the best studied cortical regions, and mostly restricted to the upper cortical layers. Here, we developed a two-photon Ca2+-imaging-based method for the serial functional mapping of all pyramidal layers of the mouse primary auditory cortex at single-neuron resolution in individual animals. We demonstrate that the best frequency-responsive neurons are organized in all-layers-crossing narrow columns, with fuzzy boundaries and a bandwidth of about one octave. This micro-architecture is, in many ways, different from what has been reported before, indicating the region and stimulus specificity of functional cortical columns invivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call