Abstract

Adaptive optics retinal imaging of fluorescent calcium indicators is a minimally invasive method used to study retinal physiology over extended periods of time. It has potential for discovering novel retinal circuits, tracking retinal function in animal models of retinal disease, and assessing vision restoration therapy. We previously demonstrated functional adaptive optics imaging of retinal neurons in the living eye using green fluorescent calcium indicators; however, the use of green fluorescent indicators presents challenges that stem from the fact that they are excited by short-wavelength light. Using red fluorescent calcium indicators such as jRGECO1a, which is excited with longer-wavelength light (~560nm), makes imaging approximately five times safer than using short-wavelength light (~500nm) used to excite green fluorescent calcium indicators such as GCaMP6s. Red fluorescent indicators also provide alternative wavelength imaging regimes to overcome cross talk with the sensitivities of intrinsic photoreceptors and blue light-activated channelrhodopsins. Here we evaluate jRGECO1a for in vivo functional adaptive optics imaging of retinal neurons using single-photon excitation in mice. We find that jRGECO1a provides similar fidelity as the established green indicator GCaMP6s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.