Abstract

The aim of this study was to determine the effects of forced expression of myocd-A in the left ventricular (LV) myocardium on cardiac performance in early neonatal piglets. LV transfection with the gene for homeodomain only protein (hop), an antagonist of myocd-mediated activities, was also performed. Gene delivery was performed in 6-day-old piglets using a low-traumatic, catheter-based, video-assisted procedure developed by us for direct intra-myocardial injections of plasmid DNA into 3-4 target areas of the ventral LV free wall (LVFW). Two isoforms of porcine myocd were identified, cloned and characterized: the exon 11-lacking myocd-A and its larger exon 11-containig variant, myocd-B. In neonatal piglets, myocd-A seems to be a cardio-predominant isoform enriched in the LVFW/septum, whereas the myocd-B isoform is detected not only in the heart but also in various smooth muscle cell-containing tissues. Intramyocardial myocd-A gene delivery resulted in forced transgene expression in the target areas of the LVFW as compared to controls. On day 2 post-delivery, a marked decrease of LV-end systolic pressure values (an accepted marker for impaired LV function) was observed in myocd-A-transfected piglets as compared to hop-transfected and control groups. In addition, forced myocd-A expression in the LVFW caused abnormal ECG. A significant up-regulation of the gene for fetal-predominant muscle light chain 3F myosin was detected in myocd-A-transfected LVFWs harvested on day 2 post-delivery. Extended analysis on day 7 post-delivery revealed a drop decrease in myocd-A transgene expression in target LVFW regions which was correlated with normalization of the LV systolic parameters in experimented piglets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.