Abstract

Activatable fluorescent molecular probes are predominantly nonfluorescent in their inactivated state due to intramolecular quenching, but increase fluorescence yield significantly after enzyme-mediated hydrolysis of peptides. Continuous wave in vivo detection of these protease-activatable fluorophores in the heart, however, is limited by the inability to differentiate between activated and nonactivated fractions of the probe and is frequently complicated by large background signal from probe accumulation in the liver. Using a cathepsin-activatable near-infrared probe (PGC-800), we demonstrate here that fluorescence lifetime (FL) significantly increases in infarcted murine myocardial tissue (0.67 ns) when compared with healthy myocardium (0.59 ns) after 24 h. Furthermore, we show that lifetime contrast can be used to distinguish in vivo cardiac fluorescence from background nonspecific liver signal. The results of this study show that lifetime contrast is a helpful addition to preclinical imaging of activatable fluorophores in the myocardium by reporting molecular activity in vivo due to changes in intramolecular quenching. This characterization of FL from activatable molecular probes will be helpful for advancing in vivo imaging of enzyme activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.