Abstract

Combining multiple genetic toxicology endpoints into a single in vivo study, and/or integrating one or more genotoxicity assays into general toxicology studies, is attractive because it reduces animal use and enables comprehensive comparative analysis using toxicity, metabolism, and pharmacokinetic information from the same animal. This laboratory has developed flow cytometric scoring techniques for monitoring two blood-based genotoxicity endpoints-micronucleated reticulocyte frequency and gene mutation at the Pig-a locus-thereby making combination and integration studies practical. The ability to effectively monitor these endpoints in short-term and repeated dosing schedules was investigated with the carcinogen/noncarcinogen pair benzo(a)pyrene (BP) and pyrene (Pyr). Male Sprague-Dawley rats were treated via oral gavage for 3 or 28 consecutive days with several dose levels of Pyr, including maximum tolerated doses. BP exposure was administered by the same route but at one dose level, 250 or 125 mg/kg/day for 3-day and 28-day studies, respectively. Serial blood samples were collected up to Day 45, and were analyzed for Pig-a mutation with a dual labeling method (SYTO 13 in combination with anti-CD59-PE) that facilitated mutant cell frequency measurements in both total erythrocytes and the reticulocyte subpopulation. A mutant cell enrichment step based on immunomagnetic column separation was used to increase the statistical power of the assay. BP induced robust mutant reticulocyte responses by Day 15, and elevated frequencies persisted until study termination. Mutant erythrocyte responses lagged mutant reticulocyte responses, with peak incidences observed on Day 30 of the 3-day study (43-fold increase) and on Day 42 of the 28-day study (171-fold increase). No mutagenic effects were apparent for Pyr. Blood samples collected on Day 4, and Day 29 for the 28-day study, were evaluated for micronucleated reticulocyte frequency. Significant increases in micronucleus frequencies were observed with BP, whereas Pyr had no effect. These results demonstrate that Pig-a and micronucleus endpoints discriminate between these structurally related carcinogenic and noncarcinogenic agents. Furthermore, the high sensitivity demonstrated with the enrichment protocol indicates that the Pig-a endpoint is suitable for both repeated-dose and acute studies, allowing integration of mutagenic and clastogenic endpoints into on-going toxicology studies, and use as a short-term assay that provides efficient screening and mechanistic information in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.