Abstract

The in vivo interrelation between excitotoxicity and oxidative stress following cerebral ischemia in the cortex of anesthetized rats was investigated. Cerebral ischemia was induced by ligation of the bilateral common carotid arteries and the unilateral middle cerebral artery. Microdialysis perfusion with on-line high-performance liquid chromatography was used to monitor the hydroxyl radical levels. Extracellular hydroxyl radical levels were quantitated as the increased formation of 2.3 and 2.5 dihydroxybenzoic acid (DHBA), the hydroxylative products of salicylic acid contained in the microdialysis perfusion solutions. Elevated cortex extracellular glutamate content, resulting from the cerebral ischemia, caused an increase in the formation of hydroxyl radicals. Exogenous perfusion of authentic glutamate solutions through implanted microdialysis probes also resulted in increased hydroxyl radical formation in the cortex. The 2.3 and 2.5 DHBA levels remained elevated for an entire 80-min ischemic period. These results suggest that, after cerebral ischemia, increased oxidative stress did occur in anesthetized rats, and the oxidative stress may result from increased excitotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.